HOW TO MAKE ART WITH SHAVING CREAM

Make beautiful paper with this bathroom-cabinet staple

Relax, parents - this is a project that has nothing to do with your kids’ latest obsession that dare not speak its name (s-i-m-e). Instead of ruining your dining room table, your kids can use shaving cream and food coloring to create one-of-a-kind works of art.

Your mini Monets will love swirling the food coloring into beautiful patterns in the shaving cream – and then transferring that design to paper to capture the image. Be warned: little ones won’t be able to resist playing with the leftover shaving cream for a fun, tactile experience. Better cover that dining room table after all.

GATHER THIS:
• Shaving cream
• Skewers or small craft sticks
• Shallow trays with rims (large baking dishes would work, too)

THEN DO THIS:
1. Spray a generous layer of shaving foam into the tray.
2. Use the edge of your ruler or craft stick to gently level the top of the shaving cream. (It doesn’t have to be perfect!)
3. Add drops of food coloring to the surface, separating so they’re not touching.
4. Use your skewer or popsicle stick to create designs by swirling the colors together.
5. Lay a sheet of paper on top of the foam and gently press it down.
6. Slowly remove the paper and lay it on the table (foam side up).
7. Use your ruler to scrape off the foam. Admire your creation as it dries!

ASK THIS:
• What happens to the colors when you swirl them with the stick?
• What shapes are you seeing in the shaving cream?

WHAT IS HAPPENING?
Shaving cream is a foam made of soap and air. Food coloring is dye dissolved in water. When food coloring is added to shaving cream, the food coloring can only interact with the soap molecules; molecules that limit its ability to move. However, when the colored shaving cream is placed on paper, the food color molecules interact with the paper molecules, which allow the food coloring to move easily across the paper.

WHAT THIS TEACHES:
Skills: Fine motor skills, scientific method
Themes: Color recognition and identification, chemistry